Indian Statistical Institute Mid-Semestral Examination Differential Topology-BMath III

Max Marks: 40 Time: 3 hours

Throughout, X, Y, Z will denote manifolds. All maps are assumed to be smooth.

- (1) Decide whether the following statements are true or false. Justify. Answers without correct justifications will not be awarded any marks.
 - (a) There does not exist a 1-1 immersion $f: S^1 \times S^1 \longrightarrow S^2$.
 - (b) There exists a 1-1 immersion $g: S^1 \times S^1 \longrightarrow S^5$.
 - (c) If $f: X \longrightarrow Y$ is a diffeomorphism, then $f \cap Z$ for every $Z \subseteq Y$.
 - (d) Every smooth map $f: S^2 \longrightarrow S^1$ has a critical point.
 - (e) If $X, Z \subseteq Y$ and $X \cap Z$, then

$$T_y(X \cap Z) = T_y(X) \cap T_y(Z)$$

for every $y \in X \cap Z$.

 $[3 \times 5 = 15]$

- (2) (a) State the pre-image theorem. Show that O(n), the set of all orthogonal matrices is a manifold. Determine its dimension and the tanent space at the identity matrix. [5]
 - (b) When do you say that a map is transverse to a manifold. Suppose that $X \xrightarrow{f} Y \xrightarrow{g} Y$ is a sequence of maps. Let $W \subseteq Z$ be a submanifold. Show that $f \pitchfork g^{-1}(W)$ if and only if $(g \circ f)^{-1} \pitchfork W$. [5]
- (3) (a) Exhibit a smooth map $f: \mathbb{R} \longrightarrow \mathbb{R}$ whose set of critical values is dense. [8]
 - (b) Define the term: Morse function. Consider the map $f: S^1 \longrightarrow \mathbb{R}$ defined by f(x,y) = xy. Find all critical points of f. For any one of the critical points of f, decide whether or not it is a non-degenerate critical point. [7]